用物理知识解释电脑系统,物理系统包括什么
1.电脑基本知识入门
2.电脑相关知识的介绍
3.电脑系统区别是什么
4.计算机的结构体系是什么?
计算机操作系统的基本概念
操作系统是管理和控制计算机硬件与软件的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。下面是我整理的计算机操作系统的基本概念,希望大家认真阅读!
1、操作系统做什么
注:计算机系统结构作为从程序设计者角度所看到的计算机属性,在计算机系统的层次结构中处于机器语言级;而计算机组织作为计算机系统结构的逻辑实现和物理实现,其任务就是围绕提高性能价格比的目标,实现计算机在机器指令级的功能和特性。研究和建立各功能部件间的相互连接和相互作用,完成各个功能部件内部的逻辑设计等是逻辑实现的内容;把逻辑设计深化到元件、器件级,则是物理实现的内容。
计算机系统可以大致分为四个组成部分:计算机硬件、操作系统、系统程序与应用程序和用户。
硬件为系统提供基本的计算,应用程序规定了用户按何种方式使用这些,操作系统控制和协调各用户的应用程序对硬件的使用。
从两个视角探索操作系统:用户视角和系统视角。
A、用户视角:
对于PC用户,系统设计是为了让单个用户单独使用其,其目的是优化用户所进行的工作。对于这种情况,操作系统的设计目的是为了用户使用方便,性能是次要的,而且不在乎使用率。
对于大型机用户,操作系统设计为使用做了优化:确保所有的CPU时间、内存和I/O都得到充分使用,并且确保没有用户使用超出其权限以外的。
对于工作站用户,操作系统的设计目的是个人使用性能和使用率的折中。
对于手持计算机用户,方便个人使用,最大化利用电池能源是操作系统设计的要点。
B、系统视角:
从系统视角,操作系统相当于分配器。操作系统管理CPU时间、内存空间等系统,在面对许多甚至冲突的请求,操作系统必须决定如何为每个程序和用户分配,以便计算机系统能有效而公平的运行。
2、计算机系统组织
计算机通过运算器、存储器、控制器、输入输出子系统等主要功能部件的相互连接和相互作用,借以实现机器指令级的各种功能和特性。从最基本的功能和作用原理来说,计算机是在控制器的全面控制下,接收经数字化编码的输入信息(程序和数据),把它存放在存储器中,根据程序的要求对数据进行快速运算,产生结果数据输出。因此,可以把运算器、存储器、控制器、输入输出子系统看成是一台计算机的逻辑组成中最基本的功能部件。
存储设备层次(按总线速率由高到低):
寄存器——高速缓存(Cache)——主存——磁盘——光盘——磁带
3、计算机系统体系结构
通过用的通用处理器的数量来分类。
A、单处理器系统
在单处理器系统中,有一个主CPU能够执行一个通用指令集,包括来自用户进程的指令。
B、多处理器系统
多处理器系统的优点:
增加吞吐量;规模经济;增加可靠性。
分类:
非对称多处理器(asymmetric multiprocessing)系统——主从关系;
对称多处理器(symmetric multiprocessing)系统——对等关系。
C、集群系统
集群计算机共享存储并通过局域网连接或更快的内部连接。
分类:
非对称集群:一部分机器处于热备份模式,其余的机器运行应用程序。
对称集群:两台或多个主机都运行程序,互相监视。
4、操作系统结构
操作系统理论研究者有时把操作系统分成四大部分:
驱动程序:最底层的、直接控制和监视各类硬件的部分,它们的职责是隐藏硬件的具体细节,并向其他部分提供一个抽象的、通用的接口。
内核:操作系统内核部分,通常运行在最高特权级,负责提供基础性、结构性的功能。
接口库:是一系列特殊的程序库,它们职责在于把系统所提供的基本服务包装成应用程序所能够使用的编程接口(API),是最靠近应用程序的部分。例如,GNU C运行期库就属于此类,它把各种操作系统的内部编程接口包装成ANSI C和POSIX编程接口的形式。
:是指操作系统中除以上三类以外的所有其他部分,通常是用于提供特定高级服务的部件。例如,在微内核结构中,大部分系统服务,以及UNIX/Linux中各种守护进程都通常被划归此列。
在这里,需要介绍一些关于内核的知识。
内核是操作系统最核心最基础的构件,内核结构往往对操作系统的外部特性以及应用领域有着一定程度的影响。
内核的结构可以分为单内核、微内核、混合内核、外内核等。
单内核(Monolithic kernel),又称为宏内核。此架构的特性是整个核心程序都是以核心空间(Kernel Space)的身份及监管者模式(Supervisor Mode)来运行(宏内核被实现为运行在单一地址空间的单一的进程,核心提供的所有服务,都以特权模式,在这个大型的核心地址空间中运作,这个地址空间被称为核心空间(kernel space))。相对于其他类型的操作系统架构,如微核心架构或混核心架构等,这些核心会定义出一个高级的虚拟接口,由该接口来涵盖描述整个电脑硬件,这些描述会集合成一组硬件描述用词,有时还会附加一些系统调用,如此可以用一个或多个模块来实现各种操作系统服务,如进程管理、共时(Concurrency)控制、存储器管理等。
微内核(Microkernel),又称为微核心。微内核结构是1980年代产生出来的较新的内核结构,强调结构性部件与功能性部件的分离。微核心的设计理念,是将系统服务的实现,与系统的基本操作规则区分开来。它实现的方式,是将核心功能模块化,划分成几个独立的进程,各自运行,这些进程被称为服务器(service)。所有的服务器进程,都运行在不同的地址空间。只有需要绝对特权的进程,才能在具特权的运行模式下运行,其余的进程则在用户 空间运行。
混合内核(Hybrid kernel)像微内核结构,只不过它的组件更多的在核心态中运行,以获得更快的执行速度。混合内核,一种操作系统内核架构,结合整块性核心与单核心两种设计方法。它的架构实作方式接近于整块性核心。最有名的混合核心为Windows NT核心与XNU。
外内核(Exokernel)的设计理念是尽可能的减少软件的抽象化,这使得开发者可以专注于硬件的抽象化。外核心的设计极为简化,它的目标是在于同时简化传统微内核的讯息传递机制,以及整块性核心的软件抽象层。外核的目标就是让应用程序直接请求一块特定的物理空间,一块特定的磁盘块等等。系统本身只保证被请求的当前是空闲的,应用程序就允许直接存取它。
在众多常用操作系统之中,除了QNX和基于Mach的UNIX等个别系统外,几乎全部用单内核结构,例如大部分的Unix、Linux,以及Windows(微软声称Windows NT是基于改良的微内核架构的,尽管理论界对此存有异议。
5、操作系统操作
*双重模式操作*:
为了确保操作系统地正常执行,必须区分操作系统代码和用户定义代码的执行。许多操作系统所取的方法是提供硬件支持以允许区分各种执行模式。
至少需要两种独立的操作模式:用户模式(user mode)和监督程序模式(monitor mode)(也称为管理模式(supervisor mode)、系统模式(system mode)或特权模式(privileged mode))。在计算机硬件中增加一个称为模式位(mode bit)的位以表示当前模式:监督程序模式(0)和用户模式(1)。有了模式位,就可以区分操作系统所执行的任务和用户所执行的任务。
系统引导时,硬件开始处于内核模式。接着,装入操作系统,开始在用户模式下执行用户进程。一旦出现陷阱或中断,硬件会从用户模式切换到内核模式。因此,只要操作系统获得了对计算机的控制,它就处于内核模式。系统在将控制交还给用户程序时会切换到用户模式。
双重模式操作提高了保护操作系统和用户程序不受错误用户程序影响的手段。其实现为:将能引起损害的机器指令作为特权指令。如果在用户模式下试图执行特权指令,那么硬件并不执行该指令,而是认为该指令非法,并将其以陷阱的形式通知操作系统。
系统调用为用户程序请作系统代表用户程序完成预留给操作系统的任务提供了方法。系统调用通常用陷阱到中断向量中的一个指定位置的方式。当系统调用被执行时,硬件会将它作为软件中断。控制权会通过中断向量转交到操作系统的中断处理程序,模式位设置成内核模式。系统调用服务程序是操作系统的一部分。内核检查中断指令以确定发生了什么系统调用;参数表示用户程序请求什么类型的服务。请求所需要的其他信息可通过寄存器、堆栈或内存来传递。内核检验参数是否正确和合法,再执行请求,然后将控制返回到系统调用之后的指令。
6、进程管理
进程是系统工作的单元。系统由多个进程组成,其中一些是操作系统进程(执行系统代码),其余的是用户进程(执行用户代码)。所有这些进程可以潜在地并发执行,如通过在单CPU上用CPU复用来实现。
操作系统负责下述与进程管理相关的活动:
*创建和删除用户进程和系统进程;
*挂起和重启进程;
*提供进程同步机制;
*提供进程通信机制;
*提供死锁处理机制。
7、内存管理
内存是现代计算机系统操作的中心。内存通常是CPU所能直接寻址和访问的唯一大容量存储器。
操作系统负责下列有关内存管理的活动:
*记录内存的哪部分正在被使用及被谁使用;
*当有内存空间是,决定哪些进程可以装入内存;
*根据需要分配和释放内存空间。
8、存储管理
操作系统对存储设备上的物理属性进行了抽象,定义了逻辑存储单元,即文件。操作系统将文件映射到物理介质上,并通过这些物理介质来访问这些文件。
A、文件系统管理
文件管理是操作系统最为常见的组成部分。文件是由其创建者定义的一组相关信息的集合。通常,文件表示程序(源程序和目标程序)和数据。
操作系统负责下列有关文件管理的活动:
*创建和删除文件;
*创建和删除目录来组织文件;
*提供操作文件和目录的原语;
*将文件映射到二级存储上;
*在稳定介质上备份文件。
B、大容量存储器管理
绝大多数现代计算机系统都用硬盘作为主要非易失存储介质来存储程序和数据。许多程序都存储在硬盘上,要执行时才调入内存,在执行时将硬盘作为处理的来源地和目的地。因此,硬盘的适当管理对计算机系统尤为重要。
操作系统负责下列有关硬盘管理的活动:
*空闲空间管理;
*存储空间分配;
*硬盘调度。
C、高速缓存
高速缓冲存储器是存在于主存与CPU之间的一级存储器,由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多,接近于CPU的速度。硬件高速缓存基于著名的局部性原理,该原理既适用于程序结构也适用于数据结构。在有高速缓冲存储器的.计算机系统中,中央处理器存取主存储器的地址划分为行号、列号和组内地址三个字段。于是,主存储器就在逻辑上划分为若干行;每行划分 为若干的存储单元组;每组包含几个或几十个字。高速存储器也相应地划分为行和列的存储单元组。二者的列数相同,组的大小也相同,但高速存储器的行数却比主 存储器的行数少得多。
高速缓存主要由三大部分组成:
*Cache存储体:存放由主存调入的指令与数据块。
*地址转换部件:建立目录表以实现主存地址到缓存地址的转换。
*替换部件:在缓存已满时按一定策略进行数据块替换,并修改地址转换部件。
操作系统执行高速缓存管理,对高速缓存大小和置换策略的仔细选择可以极大提高性能。
D、I/O子系统
I/O子系统包括如下几个部分:
*一个包括缓冲、高速缓存和脱机的内存管理部分;
*通用设备驱动器接口;
*特定硬件设备的驱动程序。
9、保护和安全
保护是一种控制进程或用户对计算机的访问的机制。这个机制必须为强加控制提供一种规格说明方法和一种强制执行方法。
安全的主要工作是防止系统不受外部或内部攻击。这些攻击范围很广,包括和蠕虫、拒绝服务攻击、身份偷窃、服务偷窃。
10、分布式系统
分布式系统是将一组物理上分开来的、各种可能的异构的计算机系统通过网络连接在一起,为用户提供系统所维护的各种的计算机的集合。
分布式系统(distributed system)是建立在网络之上的软件系统。正是因为软件的特性,所以分布式系统具有高度的内聚性和透明性。因此,网络和分布式系统之间的区别更多的在于高层软件(特别是操作系统),而不是硬件。内聚性是指每一个数据库分布节点高度自治,有本地的数据库管理系统。透明性是指每一个数据库分布节点对用户的应用来说都是透明的,看不出是本地还是远程。
网络操作系统(Network Operating System)提供跨网络的文件共享、包括允许不同计算机上的进程进行消息交换的通信方法等功能。
11、专用系统
*实时嵌入式系统
*多媒体系统
*手持系统
12、计算环境
*传统计算
*客户机-服务器计算
*对等计算
*基于Web的计算
拓展:计算机考试网络操作系统基本概念
1.单机操作系统
单机操作系统包括几个方面的管理功能:进程与处理机管理、作业管理、存储管理、设备管理、文件管理等。
(1)操作系统的管理功能
①进程管理:所谓进程(Process)就是一个将执行的程序,它附有该进程的地址空间、相应的寄存器组以及运行程序所需要的其他信息。操作系统必须提供一种启动进程的机制。在DOS中,该机制就是EXEC函数。在Windows中启动进程的函数是CreateProcess。
②内存管理:操作系统的内存管理功能是管理内存,主要实现内存的分配与回收、存储保护以及内存的扩充等。
③文件系统:文件系统负责管理在硬盘和其他大容量存储设备中存储的文件,通过文件管理向用户提供创建文件、删除文件、读写文件、打开和关闭文件等功能。
DOS通过文件表FAT寻找磁盘文件; Windows通过虚拟文件表VFAT来寻找磁盘文件; OS/2通过高性能文件系统HPFS来寻找磁盘文件。一般来说,HPFS的性能要比FAT和VFAT都好。
④设备I/O操作系统的设备管理负责分配和回收外部设备,以及控制设备按用户程序的要求进行操作。DOS使用驱动程序来管理设备。
(2)操作系统的结构
操作系统通常有4类组件。
①驱动程序;
②内核;
③接口库;
④组件
2.网络操作系统
网络操作系统(NOS)是指能使网络上各个计算机方便而有效地共享网络,为用户提供所需的各种服务的操作系统软件。
网络操作系统的基本任务是:屏蔽本地与网络的差异性,为用户提供各种基本网络服务功能,实现网络系统的共享管理,并提供网络系统的安全保障。
什么是Web OS?Web OS是一个运行在网页浏览器中的虚拟操作系统,更精确地说,Web OS是一个运行在网页浏览器中的应用程序集合。因此,有人把NOS称为服务器操作系统,把Web OS称为客户端操作系统。
3.网络操作系统的分类
一般来说,网络操作系统可以分为两类:专用型NOS与通用型NOS。
4.网络操作系统的基本功能
网络操作系统的基本功能有:文件服务、打印服务、数据库服务、通信服务、信息服务、分布式服务、网络管理服务、Internet/Intranet服务。
;电脑基本知识入门
在计算机科学中,物理地址扩展或实体位置延伸(PAE)是指x86和x86-64处理器的一个特色,即如果操作系统提供适当支持,则可以在32位的系统中使用超过4GiB字节的实体内存。PAE为IntelPentium Pro及以上级别的CPU(包括除了总线频率为400MHz的这个版本的奔腾M之外的所有新型号奔腾系列处理器)所支持,其他兼容的处理器,如速龙(Athlon)和AMD的较新型号的CPU也支持PAE。x86的处理器增加了额外的地址线以选择那些增加了的内存,所以实体内存的大小从32位增加到了36位。最大的实体内存由4GiB增加到了64GiB。32位的虚拟地址(线性地址)则没有变,所以一般的应用软件可以继续使用地址为32位的指令;如果用平面内存模式的话,这些软件的地址空间也被限制为4GiB。操作系统用页表将这4GiB的地址空间映射到大小为64GiB的实体内存,而这个映射对各个进程一般是不一样的。这样一来,即使不能为单单一个程序所用,那些增加了的物理内存仍然可以发挥作用。对于需要超过4GiB内存的应用软件来说,除了一般的PAE支持,还需要操作系统提供另外的特殊的技术。在Windows上,这种技术叫做Address Windowing Extensions(AWE)。而在类Unix的系统上则有多种技术在使用,例如使用mmap()按需要把一部分文件映射到地址空间;但是,这还没有成为一个标准。 详细请看: ://zh.wikipedia.org/wiki/%E7%89%A9%E7%90%86%E5%9C%B0%E5%9D%80%E6%89%A9%E5%B1%95
电脑相关知识的介绍
一、计算机发展
1956年,晶体管电子计算机诞生了,这是第二代电子计算机。只要几个大一点的柜子就可将它容下,运算速度也大大地提高了。1959年出现的是第三代集成电路计算机。
最初的计算机由约翰·冯·诺依曼发明(那时电脑的计算能力相当于现在的计算器),有三间库房那么大,后逐步发展而成。
从20世纪70年代开始,这是电脑发展的最新阶段。到16年,由大规模集成电路和超大规模集成电路制成的“克雷一号”,使电脑进入了第四代。超大规模集成电路的发明,使电子计算机不断向着 小型化、微型化、低功耗、智能化、系统化的方向更新换代。
20世纪90年代,电脑向“智能”方向发展,制造出与人脑相似的电脑,可以进行思维、学习、记忆、网络通信等工作。
进入21世纪,电脑更是笔记本化、微型化和专业化,每秒运算速度超过100万次,不但操作简易、价格便宜,而且可以代替人们的部分脑力劳动,甚至在某些方面扩展了人的智能。于是,今天的微型电子计算机就被形象地称做电脑了。
世界上第一台个人电脑由IBM于1980年推出。IBM推出以英特尔的x86的硬体架构及微软公司的MS-DOS操作系统的个人电脑,并制定以PC/AT为PC的规格。之后由英特尔所推出的微处理器以及微软所推出的操作系统发展几乎等同于个人电脑的发展历史。Wintel架构全面取代了IBM在个人电脑主导的地位。
二、分类
从计算机的类型、运行方式、构成器件、操作原理、应用状况等划分,计算机有多种分类。
从数据表示来说,计算机可分为数字计算机、模拟计算机以及混合计算机三类;
数字计算机按构成的器件划分,曾有机械计算机和机电计算机,现用的电子计算机,正在研究的光计算机、量子计算机、生物计算机、神经计算机等等。
电子计算机就其规模或系统功能而言,可分为巨型、大型、中型、小型、微型计算机和单片机。
综合起来说,计算机的分类是这样的:
(1)按照性能指标分类
① 巨型机: 高速度、大容量
② 大型机: 速度快、应用于军事技术科研领域
③ 小型机: 结构简单、造价低、性能价格比突出
④ 微型机: 体积小、重量轻、价格低
(2)按照用途分类
① 专用机: 针对性强、特定服务、专门设计
② 通用机: 科学计算、数据处理、过程控制解决各类问题
(3)按照原理分类
① 数字机: 速度快、精度高、自动化、通用性强
② 模拟机: 用模拟量作为运算量,速度快、精度差
③ 混合机: 集中前两者优点、避免其缺点,处于发展阶段
三、计算机系统的基本组成
不论何种计算机,它们都是由硬件和软件所组成,两者是不可分割的。人们把没有安装任何软件的计算机称为裸机。
硬件
①存储器。
②中央处理器--控制器和运算器
③外部设备--I/O设备
软件
计算机的软件系统可分为系统软件和应用软件两部分。
计算机软件系统包括:
①操作系统
②数据库管理系统
③编译系统
④网络系统
⑤标准程序库
⑥服务性程序
四、硬件系统的组成及各个部件的主要功能
硬件
计算机系统中所使用的电子线路和物理设备,是看得见、摸得着的实体,如中央处理器( CPU )、存储器、外部设备(输入输出设备、I/O设备)及总线等。
①存储器。主要功能是存放程序和数据,程序是计算机操作的依据,数据是计算机操作的对象。存储器是由存储体、地址译码器、读写控制电路、地址总线和数据总线组成。能由中央处理器直接随机存取指令和数据的存储器称为主存储器,磁盘、磁带、光盘等大容量存储器称为外存储器(或存储器) 。由主存储器、外部存储器和相应的软件,组成计算机的存储系统。
②中央处理器的主要功能是根据存储器内的程序 ,逐条地执行程序所指定的操作。中央处理器的主要组成部分是:数据寄存器、指令寄存器、指令译码器、算术逻辑部件、操作控制器、程序计数器(指令地址计数器 )、地址寄存器等。
③外部设备是用户与机器之间的桥梁。输入设备的任务是把用户要求计算机处理的数据、字符、文字、图形和程序等各种形式的信息转换为计算机所能接受的编码形式存入到计算机内。输出设备的任务是把计算机的处理结果以用户需要的形式(如屏幕显示、文字打印、图形图表、语言音响等)输出。输入输出接口是外部设备与中央处理器之间的缓冲装置,负责电气性能的匹配和信息格式的转换。
电脑系统区别是什么
电脑的组成部分:
一、软件系统
软件系统包括:操作系统、应用软件等。应用软件中电脑行业的管理软件,IT电脑行业的发展必备利器,电脑行业的erp软件。
二、硬件系统
硬件系统包括:机箱(电源、硬盘、磁盘、?内存、主板、CPU-中央处理器、CPU风扇、光驱、声卡、网卡、显卡)、显示器、UPS(不间断电源供应系统)、键盘、鼠标等等(另可配有耳机、麦克风、音箱、打印机、摄像头等)。
家用电脑一般主板都有板载声卡、网卡,部分主板装有集成显卡。
1、CPU
CPU的英文全称是"Central Processor Unit",翻译成中文就是“中央处理器单元”,它一条一条镀金的材料做的。它在PC机中的作用可以说相当于大脑在人体中的作用。所有的电脑程序都是由它来运行的。
注意:千万不要触碰cpu上的金属条,不然会导致接触不良,开不了机。
主板又叫Mother Board(母板)。它其实就是一块电路板, 上面密密麻麻都是各种电路。它可以说是PC机的神经系统,CPU、内存、显示卡、声卡等等都是直接安装在主板上的,而硬盘、软驱等部件也需要通过接线和主板连接。
2、主机
主机一般将放置在机箱中的电脑部件总称为"主机"。它是电脑的最主要组成部分,主板、CPU和硬盘等主要部件均在主机内。
3、内存?
内存与磁盘等外部存储器相比较,内存是指CPU可以直接读取的内部存储器,主要是以芯片的形式出现。内存又叫做“主存储器”,简称"主存"。
一般见到的内存芯片是条状的,也叫"内存条",它需要 插在主板上的内存槽中才能工作。还有一种内存叫作"高速缓存",英文名是"Cache",一般已经内置在CPU中或者主板上。
一般说一台机器的内存有多少兆,主要是指内存条的容量。可以在电脑刚开始启动时的画面中看到内存的容量显示,也可以在DOS系统中使用命令来查看内存容量,还可以在Windows系统中查看系统看到内存容量。
4、显示卡?
显示卡是连接显示器和PC机主板的重要元件。它是插在主板上的扩展槽里的。它 主要负责把主机向显示器发出的显示信号转化为一般电信号,使得显示器能明白PC 机在让它干什么。
显示卡上也有存储器,叫做"显示内存",它的多少将直接影响显示器的显示效果,比如清晰程度和色彩丰富程度等等。
5、显示器
显示器是电脑的输出设备之一,早期的显示器外形与电视机相似都是显像管的,即CRT显示器。现在的显示器大多是LCD或LED的。
6、磁盘和磁盘驱动器?
磁盘是PC机的外部存储器之一,分为硬盘和软盘两种。 两者的共同之处在于都是使用磁介质来储存数据,所以叫"磁盘"。想要让PC机使用磁盘,必须将磁盘放置在特殊的装置中,也就是磁盘驱动器里。
硬盘的英文是Hard Disk,直译成中文就是“硬的盘子”。由于硬盘是内置在硬盘驱动器里的,所以一般就把硬盘和硬盘驱动器混为一谈了。
硬盘的外观大小一般是3.5英寸。硬盘的容量一般以M(兆)和G(兆)计算。平常见到的硬盘容量从几十兆(几十M)到几千兆(几G)都有。
平常所说的C盘、D盘,与真正的硬盘不完全是一回事。一个真正的硬盘术语叫作“物理硬盘”,可以在DOS操作系统中把一个物理硬盘分区,分为C盘、D盘、E盘等若干个“硬盘”,术语叫作“逻辑硬盘”。
7、电脑电源和机箱?
电脑当然要有电源了,不过电脑的电源可不能直接使用220伏的普通电压。电脑的电源内部有一个变压器,把普通的220V市电转变为电脑各部件所需的电压,比如?CPU?的工作电压,一般只有几伏。?
为了安全起见,一般把电脑各部件(当然除了显示器)合理放置在机箱内部。机箱的外壳上有许多按钮,如电源启动按钮、RESET按钮(用于电脑的重新启动)等等。
机箱上还有一些指示灯,如电源指示灯在电脑工作时应该是亮的,硬盘指示灯在对硬盘进行操作时会闪烁等等。软驱和光驱在机箱前端可以直接使用。
8、扩展卡和扩展槽?
当需要用电脑看VCD、听音乐时,就需要配置声卡了。声卡不是PC机的必备部件,它是PC机的一种功能扩展卡。
所谓扩展卡,就是指这种卡可以扩展PC机的功能,比如声卡可以使PC机发声、传真卡可以使PC机具备传真功能、网卡可以让您联入网络等等。
扩展卡是直接插在主板上专为扩展卡设计的扩展槽中的。显示卡其实也是一种扩展卡,因为从计算机的基本原理来说,“显示”实际是一种额外的功能,只是为了使计算机的工作过程能在人们的直接可视的监控之下。
虽然现在显示器已经是电脑的基本设备之一了,但由于习惯原因,显示卡仍然被视作一种扩展卡。当然,声卡、传真卡、网卡都是标准的扩展卡。
9、键盘和鼠标
键盘和鼠标是PC机的输入设备,当敲击键盘时,被敲击的键就向PC机的主板发送一个信号,并继续传送给CPU,由CPU来根据操作系统中的有关程序来确认按下的键将会引起什么反应。
比如在做文字处理时,如果没有启动汉字输入系统,敲击键盘上的英文字母会直接输入英文,敲击"a"键就会显示"a"。
而当启动汉字输入系统后,敲击键盘上的英文字母后,就不会直接输入英文,而先判断所敲入英文是否符合汉字输入方法中的规则,如果能够表达某个或某些汉字,就会输入汉字。反之则无法输入汉字。
又如在DOS系统中,同时按下"Ctrl"、"Alt"和"Del"将会使电脑重新启动。 而在Windows 95/98系统中就不会使电脑重新启动,而会弹出一个"关闭程序"的对话框。目前的键盘一般有101或106个键,有的键盘还有3个Windows 95功能键。
10、DVD/CD?ROM?
即数字通用光盘。DVD光驱指读取DVD光盘的设备。DVD盘片的容量为4.7GB,相当于CD-ROM光盘的七倍,可以存储133分钟**,包含七个杜比数字化环绕音轨。
DVD盘片可分为:DVD-ROM、DVD-R(可一次写入)、DVD-RAM(可多次写入)和DVD-RW(读和重写)。目前的DVD光驱多用EIDE接口能像CD-ROM光驱一样连接到IDEas、SATA或SICI接口上。
计算机的结构体系是什么?
问题一:计算机系统和操作系统的区别与联系是什么 计算机系统由计算机硬件和软件两部分组成 这个系统是抽象的 操作系统是装在电脑里的 比如winxp Linux...... 很实际的东西 联系呢应该是计算机系统包括操作系统 你可以在百度百科分别搜一下这两个 那样更详细 我就知道这么多 百度百科是个很好的平台 多去里面看看 有帮助的
问题二:电脑操作系统的多少位是什么意思? 我们的CPU从原来的8位,16位,到现在的32位和64位。
cpu处理计算的时候“数据”和“指令”是不同对待的。
8位的CPU,一次只能处理一个8位的“数据”或者一个8位的指令。比如'00001101'.
又比如:“+1”这个运算,你要先指示CPU做“+”,完成后再输入“1”数据给CPU。
8位的CPU优点是设计简单,处理速度比较快。
缺点就是:软件设计复杂,繁琐。不利于计算机的发展。
后来推出了16位的CPU,我们就可以一次处理两个字节(16位)的数据了,比如“加1”这个命令。“加”是一个指令,占用8个位,余下的8位我们可以存放数据“1”了。
32位的CPU就更加方便了,我们就可以一次处理一个a=a+b这样的命令了。
优点:简化了软件设计的复杂度
缺点:硬件设计更加复杂,计算速度下降。
一般来讲32位的CPU对于我们来讲是最理性的CPU,对于软件开发来讲足够了。
但是2的32次方 = 4294967296bit = 4G左右
很显然32位CPU只有4G左右的内存寻址空间,对于一些服务器来讲4G的内存的远远不够的了。我们需要更加大的内存寻址空间的话就需要对CPU进升级。64位CPU就这样诞生了。64位CPU的内存寻址空间是多少你算算看!呵呵。
2的64次方(理论上)。
但是现在的AMD和Inter的64位CPU并不是真正意义上的64CPU,只是进行了部分64位的改进,比如64位的内存寻址等。
要是真的全部都是64位的了,那么现在市场上的软件将全部被淘汰不能使用了~呵呵,想像一下会是什么样子。
64位的操作系统针对64位CPU设计的,增加了一些64位的指令,但还是和32兼容的。对于我们普通用户来讲64位系统意义不大。
问题三:电脑系统32位,和64位啥区别啊 64位系统运行起来比32位的系统,理论上快2倍。2. 32位系统最多支持4G内存实际为3.25G。3. 64位系统支持4G 8G 16G 32G 64G 128G 256G内存,理论上可以无限支持,只要你主板上有 足够的内存条插槽就OK。4. 再有就是涉及到软件兼容性的问题,32位的操作系统,民用化软件基本全部兼容,而64位的要 差些,但就目前Win7的32位和64位操作系统兼容性基本一样了。而新出来的Win8系统,无论是 32位还是64位操作系统,有待完善。综上:Win7系统,无论是32位还是64位都是非常成熟的系统,是目前的主流系统。楼主可大胆的用。唯一所要注意的就是,中档和中档以上的电脑装64位的系统,中档以下的就装个32位的系统吧,
了解更多电脑知识,可以到装机员网站看看
问题四:计算机系统和计算机网络系统的区别 计算机系统可以有两种解释,第1种就是我们平时所使用的计算机,就可以算做一个计算机系统,第2种就是由不同功能的处理系统所构建起来计算机系统,比如一个大型的服务器,是由不同功能的计算机(其实不能说是计算机,比我们用的要专业的多)组建起来的,这样就为一个计算机系统。。至于计算机网络,就是把单个的计算机系统通过一种称作网际网络的技术连接在一起,这种网络技术有很多种,比如我们平时使用的Intelnet网络、手机用的WEP网络、还有一些专用的网络,如教育网、公安内部网等等。。至于操作系统就是帮助我们使用这些计算机系统的一种工具,DOS系统、Windos系统等等,当然还有其他的一些系统,现在一些智能手机的专用系统、路由器中的系统等等,这些都是操作系统。。天津众 维原画提供
问题五:服务器系统是和普通的电脑系统有什么区别如题 谢谢了 ,因为任何服务器操作系统可以安装在个人电脑上,服务器操作系统也可以安装个人版,专业版,家庭版等操作系统,在这里主要把一些系统的版本进行区别.. Windows 2000 Professional(windows2000专业版) Windows 2000 Professional其实是Windows NT Workstation( Windows NT工作站)的最新版本,是专为各种桌面计算机和便携机开发的新一代操作系统。它继承了Window s NT的先进技术,提供了高层次的安全性、稳定性和系统性能。同时,它帮助用户更加容易地使用计算机、安装和配置系统、脱机工作和使用Internet等。对于电脑和网络系统的管理员而言,Windows 2000 Profess ional是一套更具有可管理性的桌面系统,无论是部署、管理还是为它提供技术支持都更加容易……这意味着更低的总体拥有成本。 Windows 2000 Server (Windows 2000服务器版) Windows 2000 Server是在Windows NT Server 4.0(Windows NT服务器4.0版)的基础上开发出来的,按照人们一贯的思维,它命名为Windows NT Server 5.0 更合适。Windows 2000 Server是为服务器开发的多用途操作系统,可为部门工作小组或中小型公司用户提供文件打印、软件应用、Web功能和通信等各种服务。它是一个性能更好、工作更加稳定、更容易管理的平台。Wind ows 2000 Server最重要的改进是在活动目录目录服务技术的基础上,建立了一套全面的、分布式的底层服务。活动目录是集成在系统中的,用了Internet的标准技术,是一套具有扩展性的多用途目录服务技术。它能有效地简化网络用户及的管理,并使用户更容易地找到企业网为他们提供的。Windows 2000 Ser ver支持2路对称多处理器(SMP)系统,是中小型企业应用程序开发、Web服务器、工作组和分支部门的理想操作系统。 Windows 2000 Advanced Server (Windows 2000高级服务器版) 该版本最初的名称是Windows NT Server 5.0 Enterprise Edition(W indows NT服务器企业版)。Windows 2000 Advanced Server除具有Windows 2000 Server的所有功能和特性外,还提供了比之更强的特性和功能:更强的SMP扩展能力:Windows 2000 Advanced Server提供了更强的对称多处理器支持,支持数达到4路。更强大的群集功能。更高的稳定性:可为核心业务提供更高的稳定性,在多种一般错误发生后一分钟内自动重启应用软件。例如,把两台基于Intel 结构的服务器组成一个群集,可以获得很高的可用性和可管理性。网络负载平衡:为网络服务和应用程序提供高可用性和扩展能力,例如TCP/IP和Web服务。组件负载平衡:为+组件提供高可用性和扩展能力。高性能排序:Windo ws 2000 Advanced Server优化了大型数据集的排序功能。这些功能和特性使Windows200 0 Advanced Server比Windows 2000 Server具有更高的扩展性、互操作性和可管理性,可应用于拥有多种操作系统和提供Internet服务的部门和应用程序服务器。 Windows 2......>>
问题六:电脑中“\”与“/”这个的区别是什么?意思是什么? 计算机操作系统不同
比如Windows本地路径用\
例如C:\windows 叮;system32
网络一般用/
file:/D:/
xxx/
一、相对路径?相对路径就是指由这个文件所在的路径引起的跟其它文件(或文件夹)的路径关系。使用相对路径可以为我们带来非常多的便利。下面举实例详解:
例如在本地硬盘有如下两文件,它们要互做超链接
G:\site\index
G:\site\web\article\01
index要想链接到01这个文件,正确的链接应该是:链接文字,这是标准的相对路径。
反过来,01要想链接到index这个文件,在01文件里面应该写上这句:返回首页。这里的../表示向上一级。
至此,你已经了解相对路径的概念了,就是这样简单明了。如果你还是没有看明白,以前学过DOS吗?它的“CD文件夹名”和“CD..”命令用过吗?这是同理的。
注意:相对路的文件夹符号是斜杠:/
链接文字这样的链接,在href后面的第一个斜杠表示根目录,通常我们要特别慎用这种方式。 二、什么是绝对路径?
在中(广域网),以开头的链接都是绝对路径。
三、什么是物理路径?
物理路径指的是某一台计算机本地的路径,以盘符开头,例如C:\、D:\temp等等。ASP的数据库连接中,只能连接物理路径,而不能连接相对路径,所以需要用server.math对象把相对路径转化成物理路径。
\是文件的路径,如c:\windows\system\……
/是用在dos命令中加参数,DIR――显示磁盘目录命令
1.功能:显示磁盘目录的内容。
2.类型:内部命令
3.格式:DIR [盘符][路径][/P][/W]
使用说明:/P的使用;当欲查看的目录太多,无法在一屏显示完屏幕会一直往上卷,不容易看清,加上/P参数后,屏幕上会分面一次显示23行的文件信息,然后暂停,并提示;Press
any key to continue
/W的使用:加上/W只显示文件名,至于文件大小及建立的日期和时间则都省略。加上参数后,每行可以显示五个文件名。
问题七:电脑装系统都有几种方法 分别是什么 lz,电脑装系统分不同的电脑而不同。一般windows电脑主要有三种方法:光盘安装,U盘安装,硬盘安装,第一种适用于电脑没有系统安装(当然,有系统也可以)。第二种适用于没有系统,或者系统无法正常启动,但是希望把电脑桌面或者硬盘里面的东西拷出来,或者希望重新分区的情况(当然,有系统也可以)。硬盘安装要求电脑可以正常开机。楼下说的备份和还原其实不能算是系统安装,属于备份还原的。苹果电脑的话,可以光盘安装,U盘安装,升级和在线安装。光盘安装要求电脑有光驱,但是其实苹果很多电脑米有光驱的。U盘安装很方便。安装其实是属于系统升级,不属于安装。在线安装是苹果公司新出的,不过仅适用于苹果电脑,只需连接无线网即可,不管电脑有没有系统,但是安装的是最新的系统,不管正式版还是bate版,不适用于想要使用经典稳定版本的用户。其实综合考虑,U盘装系统是最好的。lz可以淘宝搜索小一电子可以,本人出 售各种系统U盘,保证正品,全国联保,保证好用,一次购买,终身免费远程维护。纯手工打。
问题八:电脑系统问题,32位和64位到底是什么个意思?有什么区别? 这里的64位技术是相对于32位而言的,这个位数指的是CPU GPRs(General-Purpose Registers,通用寄存器)的数据宽度为64位,64位指令集就是运行64位数据的指令,也就是说处理器一次可以运行64bit数据。64bit处理器并非现在才有的,在高端的RISC(Reduced Instruction Set puting,精简指令集计算机)很早就有64bit处理器了,比如SUN公司的UltraSparc Ⅲ、IBM公司的POWER5、HP公司的Alpha等。
64bit计算主要有两大优点:可以进行更大范围的整数运算;可以支持更大的内存。不能因为数字上的变化,而简单的认为64bit处理器的性能是32bit处理器性能的两倍。实际上在32bit应用下,32bit处理器的性能甚至会更强,即使是64bit处理器,目前情况下也是在32bit应用下性能更强。所以要认清64bit处理器的优势,但不可迷信64bit。
目前主流CPU使用的64位技术主要有AMD公司的AMD64位技术、Intel公司的EM64T技术、和Intel公司的IA-64技术。其中IA-64是Intel独立开发,不兼容现在的传统的32位计算机,仅用于Itanium(安腾)以及后续产品Itanium 2,一般用户不会涉及到,因此这里仅对AMD64位技术和Intel的EM64T技术做一下简单介绍。
AMD64位技术
AMD64的位技术是在原始32位X86指令集的基础上加入了X86-64扩展64位X86指令集,使这款芯片在硬件上兼容原来的32位X86软件,并同时支持X86-64的扩展64位计算,使得这款芯片成为真正的64位X86芯片。这是一个真正的64位的标准,X86-64具有64位的寻址能力。
X86-64新增的几组CPU寄存器将提供更快的执行效率。寄存器是CPU内部用来创建和储存CPU运算结果和其它运算结果的地方。标准的32-bit x86架构包括8个通用寄存器(GPR),AMD在X86-64中又增加了8组(R8-R9),将寄存器的数目提高到了16组。X86-64寄存器默认位64-bit。还增加了8组128-bit XMM寄存器(也叫SSE寄存器,XMM8-XMM15),将能给单指令多数据流技术(SIMD)运算提供更多的空间,这些128位的寄存器将提供在矢量和标量计算模式下进行128位双精度处理,为3D建模、矢量分析和虚拟现实的实现提供了硬件基础。通过提供了更多的寄存器,按照X86-64标准生产的CPU可以更有效的处理数据,可以在一个时钟周期中传输更多的信息。
EM64T技术
Intel官方是给EM64T这样定义的:EM64T全称Extended Memory 64 Technology,即扩展64bit内存技术。EM64T是Intel IA-32架构的扩展,即IA-32e(Intel Architectur-32 extension)。IA-32处理器通过附加EM64T技术,便可在兼容IA-32软件的情况下,允许软件利用更多的内存地址空间,并且允许软件进行32 bit线性地址写入。EM64T特别强调的是对32 bit和64 bit的兼容性。Intel为新核心增加了8个64 bit GPRs(R8-R15),并且把原有GRPs全部扩展为64 bit,如前文所述这样可以提高整数运算能力。增加8个128bit SSE寄存器(XMM8-XMM15),是为了增强多媒体性能,包括对SSE、SSE2和SSE3的支持。
......>>
问题九:电脑中的每个磁盘有什么区别? 其实锭个没有区别,不过是建议大家有条理有组织的存放文件,以便以后查找的时候方便而已.一般WINDOWS的系统会把C盘作为系统盘,就是装有系统程序的磁盘,但是如果说电脑里有多个系统,其他盘也可以做为系统盘的,默认是一个系统的时候是放在C盘.如果你电脑里只有一块硬盘,你看到的很多盘其实只是这个硬盘里的一些分区,把一个硬盘分成多个区,来存放不同的文件,有条理有秩序,方便用户而已,没有太大差别
问题十:买电脑带系统好还是自己装系统好?有什么区别?系统是什么?干什么的?自己装怎么装? 当然是用自带的哟,这个一般是免费的,如果自己装的话,首先的有系统,一般是收费的哟,并且安装的时候你的自己懂,如果找其他人安装的还的花钱。
计算机系统结构主要研究计算机系统的基本工作原理,以及在硬件、软件界面划分的权衡策略,建立完整的、系统的计算机软硬件整体概念。
计算机系统结构指的是什么? 是一台计算机的外表? 还是是指一台计算机内部的一块块板卡安放结构? 都不是,那么它是什么? 计算机系统结构就是计算机的的机器语言程序员或编译程序编写者所看到的外特性。所谓外特性,就是计算机的概念性结构和功能特性。用一个不恰当的比喻一,比如动物吧,它的"系统结构"是指什么呢? 它的概念性结构和功能特性,就相当于动物的器官组成及其功能特性,如鸡有胃,胃可以消化食物。至于鸡的胃是什么形状的、鸡的胃部由什么组成就不是"系统结构"研究的问题了。系统结构只管到这一层。关于计算机系统的多层次结构,用"人"这种动物的不恰当的例子列表对比如下:(这种联系很不科学,只是大家轻松一下)。
计算机系统
人
应用语言级
为人民服务级
高级语言级
读书、学习级
汇编语言级
语言、思维级
操作系统级
生理功能级
传统机器级
人体器官级
微程序机器级
细胞组织级
电子线路级
分子级
传统机器级以上的所有机器都称为虚拟机,它们是由软件实现的机器。软硬件的功能在逻辑上是等价的,即绝大多部分硬件的功能都可用软件来实现,反之亦然。
计算机系统结构的外特性,一般应包括以下几个方面(这也就是我们要分章学习的几个章节)把这几个方面弄清了,系统结构也就基本明确了:
(1)指令系统 (2)数据表示 (3)作数的寻址方式 (4)寄存器的构成定义 (5)中断机构和例外条件 (6)存储体系和管理 (7)I/O结构 (8)机器工作状态定义和切换 (9)信息保护。
所以在以后的学习中常回头想想这是系统结构的哪一方面,这对把握全局有好处。
这里提一下计算机系统结构的内部特性,计算机系统结构的内特性就是将那些外特性加以"逻辑实现"的基本属性。所谓"逻辑实现"就是在逻辑上如何实现这种功能,比如"上帝"给鸡设计了一个一定大小的胃,这个胃的功能是消化食物,这就是鸡系统的某一外特性,那怎么消化呢,就要通过鸡喙吃进食物和砂石,再通过胃的蠕动、依靠砂石的研磨来消化食物,这里的吃和蠕动等操作就是内特性。
还有一个就是计算机实现,也就是计算机组成的物理实现。它主要着眼于器件技术和微组装技术。拿上面的例子来说,这个胃由哪些组织组成几条肌肉和神经来促使它运动就是"鸡实现"。
据此我们可以分清计算机系统的外特性、内特性以及物理实现之间的关系。 在所有系统结构的特性中,指令系统的外特性是最关键的。因此,计算机系统结构有时就简称为指令集系统结构。我们这门课注重学习的是计算机的系统结构,传统的讲,就是处在硬件和软件之间介面的描述,也就是外特性。
这些不恰当的比喻只是帮助理解,不可强求对应,不然会有损科学的严密性。
计算机系统结构的分类
按"流"分类的方法,这是Flynn教授提出的按指令流和数据流的多倍性概念进行分类的方法。共有四大类,即:(S-single 单一的 I-instruction 指令 M-multiple 多倍的 D-data 数据)
SISD 单指令流单数据流,传统的单处理机属于SISD计算机。
SIMD 单指令流多数据流,并行处理机是SIMD计算机的典型代表。我国的YH-I型是此类计算机型。
MISD 多指令流单数据流,实际上不存在,但也有学者认为存在。
MIMD 多指令流多数据流,包括了大多数多处理机及多计算机系统。我国的YH-II型计算机是这种类型的计算机。
一般将标量流水机视为SISD类型,把向量流水机视为SIMD类型。
按"并行级"和"流水线"分类:这是在计算机系统中的三个子系统级别上按并行程度及流水线处理程度进行分类的方法。
--------------------------------------------------------------------------------
二、计算机系统的设计准则
1.只加速使用频率高的部件
这是最重要也是最广泛用的计算机设计准则。因为加快处理频繁出现对系统的影响远比加速处理很少出现的影响要大。
2.阿姆达尔(Amdahl)定律
这个定律就是一个公式:即
应会运用此公式做一些计算或分析,所以要记住并理解其意义。
3.程序访问的局部性规律
程序访问的局部性主要反映在时间和空间局部性两个方面,时间局部性是指程序中近期被访问的信息项可能马上将被再次访问,空间局部性指那些在访问地址上相邻近的信息项很可能被一起访问。
三、计算机系统结构的发展
冯·诺依曼计算机的主要特点是:存储程序方式;指令串行执行,并由控制器加以集中控制;单元定长的一维线性空间的存储器;使用低级机器语言,数据以二进制表示;单处理机结构,以运算器为中心。
改进后的冯·诺依曼计算机使其从原来的以运算器为中心演变为以存储器为中心。 从系统结构上讲,主要是通过各种并行处理手段高提高计算机系统性能。
软件、应用和器件对系统结构发展的影响
软件应具有可兼容性,即可移植性。为了实现软件的可移植性,可用以下方法:
模拟:用软件方法在一台现有的计算机上实现另一台计算机的指令系统,这种用实际存在的机器语言解释实现软件移植的方法就是模拟。
仿真:用A机(宿主机)中的一段微程序来解释实现B机(目标机)指令系统中每一条指令而实现B机指令系统的方法称仿真,它是有部份硬件参与解释过程的。
一般将两种方法混合作用,对于使用频率高的指令用仿真方法,而对于频率低而且难于仿真实现的指令使用模拟的方法加以实现。
用系列机的方法,可以这么说,系列机的系统结构都是一致的,如我们使用的INTEL 的80X86微机系列及其兼容机,系统结构都是一致的,当然在发展过程中它的系统结构可以得到了新的扩充,比如原来的586机器不支持MMX多媒体扩展指令集,但是后来的芯片中扩充了这些指令,使指令系统集扩大,但它们仍是同一系列的机器。这种系列机的方法主要是为了软件兼容。如上面的扩展指令,将使得以后针对这些指令优化的软件不能在以前的机子上运行(或不能发挥相应功能)导致向前兼容性不佳。但重要的是保证做到向后兼容,也就是在按某个时期推到市场上的该档机上编制的软件能不加修改地在它之后投入市场的机器上运行。
在系列机上,软件的可称植性是通过各档机器使用相同的高级语言、汇编语言和机器语言,但使用不同的微程序来实现的。
统一标准的高级语言
用与机器型号无关的高级程序设计语言标准如FORTRAN、COBOL等,这种方法提供了在不同硬件平台、不同操作系统之间的可移植性。
开放系统:是指一种独立于厂商,且遵循有关国际标准而建立的,具有系统可移植性、交互操作性,从而能允许用户自主选择具体实现技术和多厂商产品渠道的系统集成技术的系统。
应用需求对系统结构发展的影响
计算机应用对系统结构不断提出的基本要求是高的运算速度、大的存储容量和大的I/O吞吐率。(我们要更快的主板CPU和内存、我们要更大的硬盘我们要更大的显示器更多的色彩更高的刷新频率...这就是需求)
计算机应用从最初的科学计算向更高级的更复杂的应用发展,经历了从数据处理、信息处理、知识处理以及智能处理这四级逐步上升的阶段。
器件对系统结构发展的影响
由于技术的进步,器件的性能价格比迅速提高,芯片的功能越来越强,从而使系统结构的性能从较高的大型机向小型机乃至微机下移。
综上所述:
软件是促使计算机系统结构发展的最重要的因素(没有软件,机器就不能运行,所以为了能方便地使用现有软件,就必须考虑系统结构的设计。软件最重要)
应用需求是促使计算机系统结构发展的最根本的动力(机器是给人用的,我们追求更快更好,机器就要做得更快更好。所以需求最根本)
器件是促使计算机系统结构发展最活跃的因素(没有器件就产不出电脑,器件的每一次升级就带来计算机系统结构的改进。没看见上半年刚买的机子,下半年就想把它扔进历史的垃圾堆么^_^,所以器件最活跃) 。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。