1.医疗软件的系统功能

2.药剂专业发展条件分析

3.计算机在社会发展的重大意义

4.电脑怎样设计药物的?

医疗软件的系统功能

药物电脑系统的好处-药品电脑养护

环球软件医院信息管理系统的功能主要有经济管理功能、药品管理功能、临床诊疗功能、综合管理与统计分析功能、外部接口功能。

1、经济管理功能

属于医院信息系统中的最基本部分,主要包括:门急诊挂号、门急诊划价收费、出入院管理、住院收费等。

2、药品管理功能

协助整个医院完成对药品的管理,主要包括对药库、门诊药房、住院药房、药品价格等信息的管理。其中加强了基本药物的管理。

3、临床诊疗功能

主要是将整个病人诊疗过程作为主线,处理与病人诊疗有关的各种诊疗数据与信息。主要包括各种与诊疗有关的工作站,如门诊医生工作站和护士工作站等。

4、综合管理与统计分析功能

是指对医院各类相关数据的统计分析和管理,并将所有数据进行汇总、分析、综合处理供领导决策和卫生部门查询使用,主要包括医疗统计、院长综合查询与分析、卫生局综合查询与分析。

5、外部接口功能

提供了医院信息系统与新农合系统的接口,并将逐步实现与医疗保险系统、双向诊疗系统、远程医疗咨询系统、妇幼保健系统等的接口,解决医院与社会上相关系统的互联问题。

药剂专业发展条件分析

药物制剂专业培养具备药学、药剂学和药物制剂工程等方面的基本理论知识和基本实验技能,能在药物制剂和与制剂技术相关联的领域从事研究、开发、工艺设计、生产技术改进和质量控制等方面工作的高级科学技术人才。

1、药物化学对药剂学的挑战构效关系、组合化学、生物学及细胞生物学的发展使化学药物设计更合理、目的性更明确、成功率更高。过去存在的、大量的需要药剂学家解决的问题,如吸收、溶解度、靶向等在药物形成阶段即已完成。

2、制剂处方及工艺设计程序化、标准化随着辅料的标准化和制药设备的计算机化,制剂处方及工艺实现人工智能系统控制,大部分剂型和制剂实现程序设计,计算机操作员即可完成原来需由药剂学家解决的问题。

3、药物传输系统设计理论和技术新型口服缓释及控释系统的设计、靶向给药系统的靶点寻找和定位、无损伤性的其它途径给药系统的设计及方法学研究。

4、生物技术的发展对药剂学的挑战随着生物技术的迅速发展;生物大分子药物品种迅速增加,对非注射给药剂型的要求增加,尤其是安全的、无损伤性的口服给药途径和经皮给药途径剂型的研究是发展的重要方向。

5、基因治疗载体系统基因治疗利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常。灭活病毒、脂质体和其它微粒是常用载体系统,该传输系统的设计是实现基因有效转移并顺利发达的重要一环。

6、生物芯片成为药物制剂的重要组件生物芯片(biologicalchip)是生物医学领域的革命性突破,生物芯片的规范化、精确化和实用化已成现实并将广泛应用于生命科学、医药研究、环境保护和农业等领域。生物芯片的出现将加速基因疗法的发展,大大提高人类基因的破译速度。生物芯片、电脑芯片和微传输系统的完美结合,将实现生物传感、信息控制和反馈、药物传输的一体化。

7、中药剂型现代化的问题中药剂型现代化取决于中药复方的体内外物质基础和药效学基础与中药理论的有机结合。

计算机在社会发展的重大意义

计算机在社会发展中的重大意义:

1、科学计算

科学计算是计算机最早的应用领域,是指利用计算机来完成科学研究和工程技术中提出的数值计算问题。在现代科学技术工作中,科学计算的任务是大量的和复杂的。

利用计算机的运算速度高、存储容量大和连续运算的能力,可以解决人工无法完成的各种科学计算问题。例如,工程设计、地震预测、气象预报、火箭发射等都需要由计算机承担庞大而复杂的计算量。

2、过程控制

过程控制是利用计算机实时采集数据、分析数据,按最优值迅速地对控制对象进行自动调节或自动控制。采用计算机进行过程控制,不仅可以大大提高控制的自动化水平,而且可以提高控制的时效性和准确性,从而改善劳动条件、提高产量及合格率。

计算机过程控制已在机械、冶金、石油、化工、电力等部门得到广泛的应用。

3、翻译

1947年,美国数学家、工程师沃伦·韦弗与英国物理学家、工程师安德鲁·布思提出了以计算机进行翻译(简称“机译”)的设想,机译从此步入历史舞台,并走过了一条曲折而漫长的发展道路。机译被列为21世纪世界十大科技难题。

4、多媒体应用

随着电子技术特别是通信和计算机技术的发展,人们已经有能力把文本、音频、视频、动画、图形和图像等各种媒体综合起来,构成一种全新的概念—“多媒体”(Multimedia)。

在医疗、教育、商业、银行、保险、行政管理、军事、工业、广播、交流和出版等领域中,多媒体的应用发展很快。

5、计算机网络

计算机网络是由一些独立的和具备信息交换能力的计算机互联构成,以实现资源共享的系统。计算机在网络方面的应用使人类之间的交流跨越了时间和空间障碍。计算机网络已成为人类建立信息社会的物质基础,它给我们的工作带来极大的方便和快捷。

如在全国范围内的银行信用卡的使用,火车和飞机票系统的使用等。可以在全球最大的互联网络——Internet上进行浏览、检索信息、收发电子邮件、阅读书报、玩网络游戏、选购商品、参与众多问题的讨论、实现远程医疗服务等。

百度百科-计算机

电脑怎样设计药物的?

美国,马萨诸塞理工学院的实验室。

一位坐在计算机前的女士按下键盘上的一个键,于是,显示器上出现的一些明亮的针状枝杈很快就长出一个个红色的、白色的和紫色的“葡萄”。她转动一个旋钮,屏幕上的图便旋转起来。当她继续转动一些按钮和按下一些键时,屏幕上又出现另一串“葡萄”,然后,这串“葡萄”非常缓慢地漂向原先的那一串“葡萄”。

她聚精会神地注视着屏幕。两串“葡萄”离得越来越近了,终于非常紧密地结合在一起,就像两艘宇宙飞船对接那样。于是那位女士把背靠在椅子上,松了一口气。

这是怎么回事?是在玩电子游戏中取胜了吗?从某种意义上确实可以这么说,因为她做的事有可能使人类取得最大的胜利——生产出第一种能治愈肺气肿(一种能导致死亡的疾病)的药物。

这位女士是化学家林奇。现在有许多不同领域的科学家正在利用计算机寻找更有效、更安全的新药,她正是这支特殊兵种中的一员。

她的监视器屏幕上的每颗“葡萄”代表一个原子,而那些“树杈”则是把原子结合成分子的化学键。分子就是屏幕上那两串“葡萄”。其中的一个分子非常像肺弹性蛋白——这是人体产生的一种蛋白质,它具有消除被损坏的肺组织的功能。当人得了肺气肿这种病后,这种蛋白质一反常态,反而会破坏健康的肺组织。屏幕上的另一个分子则代表某种要与肺弹性蛋白对接的药物分子。

药物分子要进行对接的位置是弹性蛋白酶分子表面上的一个关键部位。这个位置科学家称它为结合点,它负责实现弹性蛋白酶分子的清除工作。但是,当弹性蛋白酶分子起反常作用去破坏肺气肿病人的健康肺细胞时,恰恰是这个结合点出了问题。

科学家研究发现,在正常情况下,结合点上有一顶合适的蛋白质“帽子”,扣得紧紧的,并且总是原位不动。直到人体需要清除被损坏的肺细胞时,这顶帽子才掉下来,这样,弹性蛋白酶分子的结合点就能同受伤细胞表面对接,然后弹性蛋白酶分子中的物质就会把受伤细胞消灭。

肺气肿病人的弹性蛋白酶分子的“帽子”是不正常的。林奇的计划是设计出一种人工帽子去代替那些天然的不正常的帽子。她在屏幕上创造出的药物分子就是她初步设计出的这种帽子。

事实上,一切药物都是靠这种原理起作用的:它们的形状必须同某一特定的生物物质,通常是与我们体内的蛋白质的结合点密合。